Comparison of the reactions of $Ru(CO)_{2}$ (triphos) (triphos= etp, ttp and Cyttp) with I_2 and CH₃I

Guochen Jia* and Devon W. Meek'

Department of Chemistry, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (U.S.A.)

(Received June 29, 1990)

Abstract

 T and T ∞ (T), T ∞ etc T the products of the Hactions of T_2 and CH₃T with Na(CO)₂(triphos) (triphos = etp (Fift (CH₂CH₂H₁)₂)₂), ttp (PhP(CH₂CH₂CH₂PPh₂)₂) and Cyttp (PhP(CH₂CH₂CH₂PCy₂)₂)) were characterized by ³¹P{¹H}, ¹H₁</sub> ${}^{13}C(^{1}H)$ NMR and IR spectroscopy, and elemental analyses. The etp complex Ru(CO)₂(etp) was prepared by treatment of $Ru_3(CO)_{12}$ with etp in refluxing benzene, fac-[RuX(CO)₂(etp)] (X=I, Me) were produced when $Ru(CO)_{2}(\text{etp})$ was treated with I₂ and CH₃I, respectively, either at room temperature or on refluxing. At room temperature, cis-mer-[RuI(CO)₂(triphos)]I and [RuMe(CO)₂(triphos)]I (triphos=ttp and Cyttp) were the products of the reaction of $Ru(CO)_{2}$ (triphos) with I₂ and CH₃I, respectively. The neutral complexes $RuI_2(CO)(triphos)$ (triphos = ttp and Cyttp) were synthesized by treatment of $Ru(CO)$ ₂(triphos) with I₂ in refluxing benzene.

Introduction

Oxidative addition reactions of low valent metal complexes are one of the important methods of preparation of inorganic and organometallic compounds and key features of many catalytically impowings and hop rearmed of many extensively in ,0111
11 There are a few reports on the oxidative addition

reactions of ruthenium carbonyl complexes containing chelating polyphosphines. Additions of X_2 ($X_2 = Cl_2$, Br₂, I₂) [2, 3] to Ru(CO)₂(tripod) (tripod= $MeC(CH_2PPh_2)$, at room temperature produced initially $[RuX(CO)_2(tripod)]X$, which were converted into $RuX₂(CO)(tripod)$ on attempted purification. The complexes $[RuR(CO)₂(tripod)]^+$ (R = H, Me, Et, $PhCH₂$, allyl) were produced by treatment of $Ru(CO)₂(tripod)$ with anhydrous hydrogen chloride and alkyl halides [3]. The triphosphine complexes $mer-[Ru(X)(CO)₂(Cyttp)]X$ $(X=Br, I)$, Cyttp = $PhP(CH_2CH_2CH_2PCy_2)_2$, were isolated as the only products from the reactions of $Ru(CO)₂(Cyttp)$ with X_2 at room temperature [4]. We herein report the synthesis and spectroscopic properties of a series of ruthenium carbonyl complexes prepared by the reactions of I_2 and CH₃I with $Ru(CO)_2$ (triphos) (triphos=etp, ttp and Cyttp).

Experimental

All manipulations were performed at room temperature under an argon atmosphere using standard Schlenk techniques, unless stated otherwise. Solvents were all reagent grade and were distilled over argon from appropriate drying agents prior to use. Solutions were transferred by use of syringes that were flushed with argon before use. Air-sensitive solids were handled and transferred in a Vacuum Atmospheres HE43 inert atmosphere box equipped with a MO-40 catalyst system. Minute traces of oxygen and water were removed from commercially available argon by passing the gas through two columns packed with hot (180 "C) BASF active copper catalyst and Drierite, respectively.

Iodine (J. T. Baker Co.), etp (Pressure Chemical Co.) and $Ru_3(CO)_{12}$ (Strem Chemical Inc.) were used as purchased. Methyl iodide (EM Science) was distilled over P_2O_5 under an argon atmosphere before use. The complexes $Ru(CO)₂(ttp)$, $Ru(CO)₂(Cyttp)$

 \overline{A} Attribution to whom correspondence should be addressed at the Department of Chemistry, University of Toronto, Toronto, Ont., M5S 1A1, Canada.
[†]Deceased December 7, 1988.

and Rul(CO)_{2} (Cyttp)]I were prepared according to literature methods [4].

Infrared spectra were recorded on a Perkin-Elmer 283B grating spectrophotometer from 4000 to 200 cm-', as pressed potassium bromide pellets, Nujol mulls, or in solution. Spectra were calibrated against the sharp 1601 cm^{-1} peak of polystyrene film. A Bruker AM-250 spectrometer was used to obtain proton (250.13 MHz), phosphorus-31 (101.25 MHz) and carbon-13 (62.9 MHz) NMR spectra in 5 mm tubes. Residual solvent proton or carbon-13 resonances were used as internal standards for the 'H or 13C NMR spectra. Phosphorus chemical shifts were determined relative to 85% H_3PO_4 as an external standard. 31P{1H} NMR and selected IR spectroscopic data for the ruthenium carbonyl complexes are collected in Table 1, and selected ${}^{13}C(^{1}H)$ and ${}^{1}H$ NMR data in Table 2.

Conductivity data were obtained on c . 10^{-3} M nitromethane solutions with a Lab Line unbreakabletype conductivity cell, Catalog No. 11200. An Industrial Instruments Inc. conductivity bridge (model RC16B2) was used to determine the resistance of solutions at 1000 Hz. In the experimental section, the molar conductance values A_M have the unit ohm^{-1} c m² mol⁻¹. Elemental analyses were performed by M-H-W Laboratories, Phoenix, AZ.

$Ru(CO)_{2}(etp)$

A solution of 0.40 g of $Ru_3(CO)_{12}$ (1.9 mmol of Ru) and 1.11 g of etp (2.07 mmol) in 70 ml of benzene was refluxed for 18 h to give a light yellow-orange solution. The solvent was removed under vacuum until some yellow solids were formed (c. 2 ml) and then 50 ml of hexane was added to the reaction mixture to give a yellow solid. The solid was collected on a filter frit, washed with hexane, and dried under vacuum overnight. Yield: 0.91 g, 70%. *Anal.* Calc. for C₃₆H₃₃O₂P₃Ru: C, 62.52; H, 4.81; P, 13.43. Found: C, 62.42; H, 5.00; P. 13.26%.

$[Rul(CO),(etp)]$

A solution of 0.0550 g of iodine (0.217 mmol) in 20 ml of benzene was added slowly to a solution of 0.15 g of $Ru(CO)₂(etp)$ (0.22 mmol) in 10 ml of benzene. The color of iodine disappeared very quickly and the reaction mixture became cloudy immediately upon addition of iodine. After stirring for 30 min the resulting pale-yellow solid was collected on a filter frit, washed with benzene and ether, and dried under vacuum overnight. Yield: 0.18 g, 88%. *Anal.* Calc. for $C_{36}H_{33}I_2O_2P_3Ru$: C, 45.74; H, 3.52; I, 26.84. Found: C, 45.50; H, 3.71; I, 26.67%. $A_M = 94$.

$[RuMe(CO)_2(etp)]$

A mixture of 0.20 g of $Ru(CO)₂(etp)$ (0.29 mmol) and 0.5 ml of Me1 (8 mmol) in 20 ml of benzene was stirred for 6 h to give a white solid. The solid was collected on a filter frit, washed with benzene and ether, and dried under vacuum overnight. Yield: 0.19 g, 79%. Anal. Calc. for $C_{37}H_{36}IO_2P_3Ru$: C, 53.31; H, 4.36; I, 15.22. Found: C, 53.35; H, 4.29; I, 15.36%. $\Lambda_{\rm M} = 94.$

$[Rul(CO)₂(tip)]I$

A solution of 0.0529 g of iodine (0.208 mmol) in 20 ml of benzene was added slowly to a solution of

TABLE 1. ^{31}P NMR^a and selected infrared^b data for the ruthenium carbonyl complexes

Compound	$31P$ NMR			Solvent	IR (cm ⁻¹) $\nu(CO)$
	$\delta(P_1)$	$\delta(P_2)$	$J(P_1P_2)$		
Ru(CO) ₂ (etp)	109.4	76.5	32.9	C_6H_6	1930, 1870
Ru(CO ₂)(ttp) ^c	-0.1	35.0	50	C ₆ H ₆	1900, 1845
$Ru(CO)$ ₂ (Cyttp) ^c	4.7	38.6	48	C_6H_6	1880, 1820
$[Rul(CO)2(etp)]$ I	79.1	57.5, 45.5	d	acetone	2045, 2000
$[Rul(CO)2(ttp)]$ I	-18.9	-5.1	37.8	CH ₃ NO ₂	2040, 2010
$[Rul(CO)2(Cyttp)]Ic$	-18.0	2.7	34	acetone	2045, 1985
$\text{RuI}_2(CO)(\text{ttp})$	8.1	-8.8	31.8	CH ₂ Cl ₂	1980
RuI ₂ (CO)(Cyttp)	7.8	-8.4	30.5	CH ₂ Cl ₂	1950
[RuMe(CO) ₂ (etp)]I	84.3	59.4, 45.9	e	acetone	2015, 1975
trans-[$RuMe(CO)2(ttp)$]I	-8.8	15.1	28.6	CH ₁ NO ₂	1980
trans-[RuMe(CO),(Cyttp)]I	-8.6	13.1	24.3	CH ₁ NO ₂	1970
cis-[RuMe(CO) ₂ (Cyttp)]I	-10.8	10.8	37.8	CH ₁ NO ₂	2010, 1965
RuMel(CO)(ttp)	-13.5	16.1	44.9	CH ₂ Cl ₂	1925

³³¹P chemical shifts are in ppm with respect to external 85% H₃PO₄ (δ 0.0); positive values are downfield; coupling constants are in Hz; P_1 is the central phosphorus atom and P_2 the two terminal phosphorus atoms in the triphosphine gand. "Spectra were obtained in KBr disks. "From ref. 4. $dJ(P_1P_2) = 9.8$ Hz, $J(P_1P_2) = 17.1$ Hz, $J(P_2P_2') = 21.0$ Hz. $J(P_1P_2) = 6$ Hz, $J(P_1P'_2) = 21$ Hz, $J(P_2P'_2) = 18$ Hz.

TABLE 2. ¹³C and ¹H NMR data for the ruthenium carbonyl complexes^{*}

Compound	^{13}C NMR	¹ H NMR	
	δ (CO)	$\delta(Me)$	δ (Me)
$[Rul(CO)2(ttp)]$ I	192.1(q; $J = 10$ Hz)		
	188.6(dt; $J=86.9$, 10.5 Hz)		
$[Rul(CO)2(Cyttp)]p$	194.9(q; $J = 11.2$ Hz)		
	193.8(dt; $J=87.4$, 10.5 Hz)		
$\text{RuI}_2(CO)(\text{ttp})$	199.6(q; $J = 10.0$ Hz)		
$\text{RuI}_2(CO)(\text{Cyttp})$	$201.2(q; J=9.2 \text{ Hz})$		
$[RuMe(CO),(etp)]$ I	197.9(ddd; $J = 82.0$, 12.9, 7.4 Hz)	-18.8 (dt; J = 34.8, 7.8 Hz) -0.65 (td; J = 6.6, 3.0 Hz) ^c	
	200.9 (ddd; J = 80.5, 13.4, 7.3 Hz)		
<i>trans</i> -[$RuMe(CO)_{2}$ (ttp)]	200.5 (td; J = 13.1, 7.7 Hz)	-15.1 (dt; J = 27.9, 6.1 Hz) -0.38 (td; J = 5.5, 2.9 Hz)	
	201.1 (td; J = 13.5, 8.5 Hz)		
trans-[RuMe(CO) ₂ (Cyttp)]I ^b	$203.6(q; J=9 Hz)$	-23.0 (dt; J = 28.6, 7.2 Hz) -0.10 (td; J = 5.1, 2.8 Hz)	
	$205.4(q; J=9 Hz)$		
cis -[RuMe(CO) ₂ (Cyttp)I		$-10.2(q; J=7.4 \text{ Hz})$	$-0.52(q, J=6 Hz)$
RuMel(CO)(ttp)	205.8 (dt; $J = 87.9$, 14.7 Hz)	$-1.77(q; J=6.4 \text{ Hz})$	

"Spectra were obtained in CD_2Cl_2 except where indicated. Chemical shifts are in ppm with respect to Me₄Si; positive values are downfield. d = doublet, q = quartet, t = triplet. $\rm{^{b}In}CD_3NO_2$ solution. $\rm{^{c}In}CD_3CN$.

0.15 g of $Ru(CO)₂(ttp)$ (0.21 mmol) in 10 ml of benzene. After stirring for c . 30 min the resulting light-yellow solid was collected on a filter frit, washed with benzene and ether, and dried under vacuum overnight. Yield: 0.18 g, 90%. *Anal.* Calc. for $C_{38}H_{37}I_2O_2P_3Ru$: C, 46.88; H, 3.86; I, 26.07. Found: C, 46.07; H, 3.96; I, 25.69%. $A_M = 98$.

$RuI₂(CO)(ttp)$

A solution of 0.0352 g of iodine (0.139 mmol) in 15 ml of benzene was added slowly to a boiling solution of 0.10 g of $Ru(CO)₂(ttp)$ (0.14 mmol) in 10 ml of benzene. The color of iodine disappeared and a yellow solid formed immediately upon addition of iodine. After refluxing for 2 h, the initially formed yellow solid disappeared and a yellow solution was obtained. The volume of the reaction mixture was reduced until the solution became cloudy (c. 2 ml), and then 20 ml of ether was added to give a yellow solid. The solid was collected on a filter frit, washed with ether, and dried under vacuum overnight. Yield: 0.11 g, 84%. Anal. Calc. for C₃₇H₃₇I₂OP₃Ru: C, 47.01; H, 3.95; I, 26.84. Found: C, 46.97; H, 4.02; I, 26.59%.

 $[RuMe(CO)_2(ttp)]$
A mixture of 0.15 g of Ru(CO)₂(ttp) (0.21 mmol) and 0.5 ml of Me1 (8 mmol) in 15 ml of benzene was stirred for 6 h to give a white solid. The solid was then collected on a filter frit, washed with benzene and ether, and dried under vacuum overnight. Yield: 0.16 g, 89%. *Anal.* Calc. for C₃₉H₄₀IO₂P₃Ru: C, 54.37; H, 4.68; I, 14.70. Found: C, 54.20; H, 4.65; I, 14.59%. $A_M = 96$.

$RuMe(I)(CO)(tp)$

A mixture of 0.15 g of $Ru(CO)₂(ttp)$ (0.21 mmol) and 0.5 ml of Me1 (8 mmol) in 20 ml of benzene was refluxed for 2 h to give a yellow solution. The volume of the reaction mixture was reduced until the solution became cloudy $(c. 2 \text{ ml})$, and then 20 ml of ether was added to give a light yellow solid. The solid was collected on a filter frit, washed with ether, and dried under vacuum overnight. Yield: 0.13 g, 75%. *Anal*. Calc. for C₃₈H₄₀IOP₃Ru: C, 54.75; H, 4.83; I, 15.22. Found: C, 54.41; H, 4.64; I, 15.43%.

$Rul₂(CO)(Cyttp)$

A solution of 0.0342 g of iodine (0.133 mmol) in 20 ml of benzene was added slowly to a boiling solution of 0.10 g of $Ru(CO)₂(Cyttp)$ in 10 ml of benzene. The color of iodine disappeared immediately and the reaction mixture became cloudy in a few minutes addition of iodine. A yellow solution was obtained after refluxing overnight. The volume of the reaction mixture was reduced to c. 1 ml, and 20 ml of ether was added to give a bright yellow solid. The solid was collected on a filter frit, washed with ether, and dried under vacuum overnight. Yield: 0.10 g, 77%. *Anal*. Calc. for C₃₇H₆₁I₂OP₃Ru: C, 45.83; H, 6.34; I, 26.17. Found: C, 45.74; H, 6.39; I, 26.23%.

Results and discussion

Preparation and structure of $Ru(CO)₂(etp)$

Like ttp, Cyttp and tripod, the triphosphine etp also forms $Ru(CO)₂(etp (1) directly from Ru₃(CO)₁₂.$

The complex $Ru(CO)₂(etp)$ displays infrared bands at 1930 and 1870 cm^{-1} with similar intensity, which implies that the two carbonyl groups are *cis* to each other [5]. The ³¹P NMR spectrum of $Ru(CO)_{2}(etp)$ in benzene exhibits a doublet at 76.5 ppm for the two terminal phosphorus atoms and a triplet at 109.4 ppm $(J(PP) = 32.9$ Hz) for the central phosphorus atom. The spectroscopic data are consistent with the proposed structure **lA, 1B** or **1C** as shown below. Although **1B** and 1C cannot be excluded, the TBP structure 1A is preferred for the d^8 Ru(0) complex, based on the following arguments. It has been

reported that trigonal bipyramidal geometry is more stable than square pyramidal geometry for high-spin d^4 , d^9 and low-spin d^8 configurations [6]. The isoelectronic complexes $[Co(CO)(L)(etp)]X (L=CO,$ P(OMe)₃, PPh₂H, PPh₂Me, PEt₃) are trigonal bipyramidal with the equatorial positions occupied by a carbonyl ligand and the two terminal phosphorus atoms of the triphosphine, i.e. like structure 1A [7]. Facial etp ruthenium complexes are known, for example, $(\text{etp})\text{CIRu}(\mu\text{-Cl})_2\text{RuCl}(\text{etp})$ [8]. In addition, the products of the reactions of $Ru(CO)_{2}(etp)$ with I₂ and MeI are all facial compounds (see below).

Reactions of iodine

The reactions of I_2 with $Ru(CO)₂(triphos)$ are summarized in Scheme 1. It has been reported that treatment of $Ru(CO)₂(Cyttp)$ with molecular halogens X_2 (e.g. Br_2 , I₂) produced *cis-mer-* $[RuX(CO)₂(cyttp)]X$ at room temperature [4], while treatment of $Ru(CO)_{2}$ (tripod) with X_{2} (e.g. Cl₂, Br₂, I_2) [2, 3] gives initially $[RuX(CO)₂(tripod)]X$, which were readily converted into neutral complexes $RuX₂(CO)(tripod)$. Treatment of $Ru(CO)₂(etp)$ and $Ru(CO)₂(ttp)$ with one equivalent of iodine at room temperature also gives similar compounds $[Rul(CO)₂(etp)]I$ (2) and $[Rul(CO)₂(ttp)]I$ (3), respectively. It was also noted that intractable products were obtained when excess iodine was employed.

The spectroscopic data of $[RuI(CO)₂(etp)]I$ suggest that $[Rul(CO)₂(etp)]$ I has the structure shown in Scheme 1. Its $3^{1}P$ NMR spectrum displays three doublet of doublets resonances. The structure proposed is the only one fitting the 31P NMR data. The most downfield signal at 79.1 ppm is assigned to the central PPh group since it is the bridgehead of two five-membered rings, thus a very low field chemical shift is expected [9]. The resonances at 57.5 and 4.5;5 ppm are assigned to the PPh, group *tram* to

Scheme 1. Reactions of $Ru(CO)₂(triphos)$ (triphos = etp, ttp, and Cyttp) with I_2 in benzene.

iodide and the one *trans* to a carbonyl, respectively, based on the *trans* influence of iodide and carbonyl on phosphorus chemical shifts [9]. The infrared spectrum shows two equally strong carbonyl absorptions characteristic of cis carbonyls [5].

The spectroscopic data of $[RuI(CO), (ttp))]$ are consistent with the structure shown in Scheme 1, which is similar to that of $[RuI(CO)₂(Cyttp)]I [4]$. The infrared spectrum of $[RuI(CO)₂(ttp)]I$ shows two equally strong carbonyl absorptions (at 2040 and 2010 cm^{-1}) characteristic of *cis* carbonyls [5]. Its ³¹P NMR spectrum shows a doublet at -5.1 ppm for the two terminal phosphorus atoms and a triplet at -18.9 ppm $(J(PP) = 37.8$ Hz) for the central phosphorus atom. The pattern indicates that the triphosphine is meridional around ruthenium and that the central phosphorus atom is *trans* to a carbonyl rather than the iodide [9]. Consistent with the structure, in the 13 C NMR spectrum, the resonance for the carbonyl *trans* to the central phosphorus atom was observed at 188.6 ppm (dt; $J(PC) = 86.9, 10.5$ Hz) and that for the carbonyl *cis* to the three phosphorus atoms at 192.1 ppm $(q, J(PC) = 10 \text{ Hz})$. The *cis* and *trans* 31P-13C0 coupling constants are comparable to those observed in similar ruthenium carbonyl complexes [10].

The neutral complex $RuI₂(CO)(ttp)$ (4) was formed when $Ru(CO)₂(ttp)$ was treated with one equivalent of iodine in boiling benzene and refluxed for 2 h. Similarly $RuI_2(CO)(Cyttp)$ (5) was produced when a mixture of $Ru(CO)₂(Cyttp)$ and one equivalent of iodine was refluxed in benzene overnight. The neutral complexes were formed via the intermediates

 $\sum_{i=1}^{n}$ κ ut(ω)₂(triphos)] ι by displacement of a carbonyi group with the iodide anion as the formation and
disappearance of a yellow solid of $\sum_{k=1}^{\infty}$ $\sum_{k=1}^{\infty}$ is $\sum_{k=1}^{\infty}$ we have $\sum_{k=1}^{\infty}$ $\text{null}(CO)_{2}$ (*Explos)* μ were observed. Interestingly, no detectable amount of $RuI_2(CO)(etp)$ was formed when a mixture of $Ru(CO)₂(etp)$ and one equivalent of iodine in benzene was refluxed for 14 h; only $[RuI(CO)₂(etp)]$ I was produced. In contrast, it has been reported that conversion of $\left[\text{RuX(CO)}\right]_{2}$ -(tripod)]X (X = Cl, Br, I) to $RuX_2(CO)$ (tripod) occurred readily $[2, 3]$. The difference in the stability of RuI(CO)_2 (triphos)]I seems related to the Ru–CO bond strength. For example, carbonyl absorptions
were observed at 2078 and 2040 cm^{-1} in were observed at 2078 and 2040 cm^{-1} $[Rul(CO)₂(tripod)]PF₆$ [3] while the carbonyl absorptions were observed below 2045 cm^{-1} in $\lceil \text{RuI(CO)}_2(\text{triphos}) \rceil I(\text{triphos} = \text{Cyttp}, \text{ttp}, \text{etp}).$ The lower CO frequencies imply the stronger Ru-CO
bond present in the latter complexes. The present in the famer complexes.

The complexes κu_2 (CO)(triplies) (triplies $-\iota \nu$), Cyttp) have very similar properties and therefore similar structures. Both $RuI₂(CO)(triphos)$ (triphos = ttp, Cyttp) are insoluble in polar solvents such
as acetone and acetonitrile, but soluble in benzene and different direction different in the $\frac{13}{12}$ nm spectra, $\frac{13}{12}$ $\frac{1}{2}$ denoting the $\frac{1}{2}$ resonance were observed at 199.6 ppm the carbonyl resonances were observed at 199.6 ppm $(q, J(PC) = 10.0$ Hz) for RuI₂(CO)(ttp) and 201.2 ppm (q, $J(PC) = 9.2$ Hz) for $RuI_2(CO)(Cyttp)$. The magnitude of the coupling constants $\frac{2J}{3}P^{-13}CO$) and the pattern of the carbonyl resonances support that the carbonyl is cis to the three phosphorus atoms of the triphosphine in both complexes. Thus the triphosphines are meridional around ruthenium
and the iodide ligands are *cis* to each other in the $\frac{d}{dx}$ die 10 die 11g november 21 Persons en bother in the modo complexes. The T party specific of both complexes show an A_2B pattern and the phosphorus chemical shift of the central PPh group is located downfield from that of the terminal $PR₂$ groups, which also suggest that the triphosphines are meridional around ruthenium and that an iodide rather than the CO is *trans* to the central PPh group [9].

Reactions of Mel

 T_1 with T_2 are reactions of Me1 with Ru(CO),(triphos) are T_1 $\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i$ $R_{\text{ref}}(C_0)$ (triphosophos) (triphosophos) to the Cyttps toward $\frac{\mu_1(\text{C}t)}{T}$ (the room temperature is very similar very sim MeI at room temperature is very similar. Thus,
[RuMe(CO)₂(triphos)]I (triphos=etp, 6; ttp, 7; $\frac{\mu_0}{\sigma}$ (extending when $\frac{\mu_0}{\sigma}$ (extending $\frac{\mu_0}{\sigma}$), $\frac{\mu_0}{\sigma}$ \mathcal{L} yttp, o) were obtained when $\mathbf{K} \mathbf{u}(\mathbf{C} \mathbf{O})_2$ (triphos) were treated with MeI at room temperature in benzene. However, the structures of the products are dependent on the triphosphine. In on the triphospillie.
 T_1 is seen to $(T_1, Y_2)(\overline{C_1})$ is similar to similar to similar to the similar to similar to the simi

The structure of $\lbrack \text{Rumc}(\text{CO})/(\text{Cov})/(\text{CO}) \rbrack$ that of $[Rul(CO)_2(\text{etp})]$ I. The infrared spectrum of $[RulMe(CO)_2(\text{etp})]$ I displays two equally strong car-

Scheme 2. Reactions of Ru(CO),(triphos) (triphos = etp, cheme 2. Reactions of $\text{Ru}(CO)_2(\text{trip})$

bonyl absorptions at 2015 and 1975 cm⁻¹ indicating that the two carbonyls are cis to each other [5]. Its $³¹P$ NMR spectrum shows three doublet of doublets</sup> resonances; thus the triphosphine is facially bonded to ruthenium. The resonances at 84.3, 59.4 and 45.9 ppm are assigned to the central PPh group, the $PPh₂$ group *trans* to the methyl and the PPh₂ group *trans* to a carbonyl, respectively, by analogy to the spectral assignments of $[Rul(CO)₂(etp)]$ I. the Ru-Me resonance in the 'H NMR spectrum was observed at -0.65 ppm (td, $J(PH) = 6.6$ (cis), 3.0 (trans) Hz). The chemical shift is comparable with the value -0.41 ppm for the Ru-Me in [RuMe(CO)- $(PMe₂Ph)(tripod)$]PF₆ [10]. The trend that *cis* coupling between phosphorus and methyl protons is larger than *trans* coupling is consistent with other observations on similar ruthenium complexes [3, lo]. In the ¹³C NMR spectrum, the Ru-Me resonance appeared at -18.8 ppm (dt, $J(PC) = 34.8$, 7.8 Hz). The resonances at 197.9 and 200.9 ppm assignable to the two carbonyls were also observed.

Although the structure of $[RuMe(CO)_{2}(etp)]$ is similar to that of $[RuI(CO)₂(etp)]$, the structures of $[RuMe(CO)₂(ttp)]$ I and $[RuI(CO)₂(ttp)]$ I are different. The two carbonyls are *trans* to each other in $[RuMe(CO)₂(ttp)]$ I (the carbonyls are *cis* to each other in $[Rul(CO)₂(ttp)]$. The infrared spectrum of $[RuMe(CO)₂(ttp)]$ I shows only one strong carbonyl absorption at 1980 cm^{-1} , which is consistent with the two carbonyls essentially trans to each other [S]. In its ¹³C NMR spectrum the resonances at 200.5 $(td; J(PC) = 13.1, 7.7 Hz)$ and 201.1 (td; $J(PC) = 13.5$, 8.5 Hz) ppm assignable to the two carbonyls were observed. The two carbonyls are slightly different from each other owing to the fixed orientation of the phenyl group on the central phosphorus atom of the triphosphine. The infrared and 13C NMR data suggest that both carbonyls are cis to the three phosphorus atoms of the triphosphine and the triphosphine is meridional around ruthenium. The Ru-Me resonance was observed at -15.1 ppm (dt, $J(PC) = 27.9, 6.1 \text{ Hz}$) in the ¹³C NMR spectrum. The Ru-Me resonance in the 'H NMR spectrum was observed at -0.38 ppm (td, $J(PH) = 5.5$, 2.9 Hz); again cis $\frac{3J(PH)}{2}$ coupling is larger than the *trans* coupling. Its ${}^{31}P$ NMR spectrum shows A₂B pattern and the phosphorus chemical shift of the central PPh group is located upfield from that of the terminal $PPh₂$ groups; which is similar to that of cis- $[Rul(CO)₂(ttp)]$ I.

Treatment of Ru(CO)₂(Cyttp) with MeI at room temperature produced a white solid. The white solid isolated from the reaction consists of predominantly isomer **SA** and trace amount of isomer **8B** (structures shown below). When solutions of the white solid

in dichloromethane, nitromethane, or acetonitrile were kept at room temperature, the amount of isomer **8A** decreased, and the amount of isomer **SB** increased. However, isomer **8A** could not be converted into isomer **8B** completely (e.g isomer **SA** was still the major species in CD_3NO_2 solution after the solution was kept at room temperature for nine days). It is interesting to note that only one isomer was observed for the analogous compound $[RuMe(CO)_{2}(ttp)]$.

The 31P, IR, 'H and 13C NMR data for **SA** are very similar to those observed for $\left[\text{RuMe(CO)}_{2}(\text{ttp})\right]$ (see Tables 1 and 2), thus a structure similar to that of $\left[\text{RuMe(CO)}_{2}(\text{ttp})\right]$ is assigned to 8A of [RuMe(CO),(Cyttp)JI in which two CO are *truns* to each other. Isomer **SB** is also a meridional compound, but the two carbonyls are cis to each other. In the $13C$ NMR spectrum, the Ru-Me resonance was observed at -10.2 ppm as a quartet with $\frac{2J}{PC}$ = 7.2 Hz, which suggests that the methyl group is *cis* to the three phosphorus atoms of the triphosphine and that the triphosphine is meridional around ruthenium. In the ³¹P NMR spectrum, a doublet at 10.8 ppm, assignable to the two PC_{Y_2} groups, and a triplet at -10.8 ppm, assignable to the central PPh group, were observed. The infrared bands at 2010 and 1965 cm^{-1} were assigned to the carbonyl absorptions for the isomer. The Ru-Me resonance in the 'H NMR spectrum in CD_2Cl_2 was observed at -0.52 ppm (q, $3J(PH) = 6$ Hz).

Different products were obtained when the reactions of Me1 were carried out in refluxing benzene. The neutral complex RuMe(I)(CO)(ttp) could be isolate by treatment of $Ru(CO)_{2}$ (ttp) with MeI in refluxing benzene [ll]. However, [RuMe(CO),(etp)]I was isolated even when a mixture of $Ru(CO)$ ₂(etp) and Me1 in benzene was refluxed for 22 h. The reaction of $Ru(CO)₂(Cyttp)$ with MeI in refluxing benzene resulted in a complicated mixture as indicated by the *in situ* 31P NMR spectrum. Similarly, a complicated mixture was also obtained when the isolated $[RuMe(CO)₂(Cyttp)]$ I was refluxed in benzene for several hours. The relatively easy conversion of $[RuMe(CO)_{2}(t_{1})]$ to the neutral complex Ru(Me)(I)(CO)(ttp) compared with the difficulty of conversion of $[RuMe(CO)₂(etp)]$ I to the corresponding neutral compound is probably related to the fact that the two carbonyls are *trans* to each other in $[RuMe(CO)₂(ttp)]$ I whereas the two carbonyls are *trans* to phosphorus atoms in $[RuMe(CO)₂(etp)]$ I. Thus the two carbonyls in $[RuMe(CO)_{2}(ttp)]$ are electronically more unfavorable owing to the presence of *trans* strong π -acceptor carbonyls compared with $[RuMe(CO)$ ₂(etp)]I.

This study shows that the reactivity of $Ru(CO)₂(triphos)$ (triphos = etp, ttp, Cyttp) toward I₂ and MeI at room temperature is similar except that the stereochemistry of the reaction products are different. The triphosphines $PhP(CH_2CH_2 CH_2PR_2$)₂ (R = Ph, Cy) prefer meridional arrangement whereas $PhP(CH_2CH_2PPh_2)_2$ prefers a facial arrangement in an octahedral ruthenium complex. Such structural preference has been noted in other metal (such as cobalt) systems and has been attributed to a decrease in chelate bite angle of the etp ligand [7]. Treatment of $Ru(CO)₂(triphos)$ (triphos = ttp and Cyttp) with I₂ at room temperature gives *cis* mer -[RuI(CO)₂(triphos)]I whereas with MeI gives trans-mer-[RuMe(CO)₂(triphos)]I. Different products were obtained when the reactions were carried out in refluxing benzene.

Acknowledgements

We are grateful to the Johnson Matthey Co. for a loan of 'RuCl₃.3H₂O'. We thank Professors Robert H. Morris and Andrew Wojcicki for their help in the preparation of this manuscript.

References

1 (a) J. D. Atwood, *Inorganic and Organometallic Reaction Mechanism,* Brooks/Cole Publishing Co., Monterey,CA,

1985; (b) P. R. Collman and L. S. Hegedus, *Principles and Applications of Organotransition Metal Complexes,* University Science Books, Mill Valley, CA, 1980.

- 2 W. 0. Siegl, S. J. Lapporte and J. P. Collman, Inorg. *Chem., I2* (1973) *674.*
- *3 S.* I. Hommeltoft and M. C. Baird, *Orgunometullics, 5 (1986)* 190.
- 4 .I. B. Letts, T. J. Mazanec and D. W. Meek, *Organometallics, 2* (1983) 695.
- 5 F. A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry,* Wiley-Interscience, New York, 4th edn., 1980, pp. 1073-1076.
- 6 B. F. Hoskins and F. D. Whillans, Coord. *Chem. Rev., 9 (1972) 365.*
- *7* D. L. Dubois and D. W. Meek, Inorg. Chem., 15 (1976) 3076.
- 8 R. B. King, P. N. Kapoor and R. N. Kapoor, Inorg. *Chem., 10* (1971) 1841.
- 9 D. W. Meek and T. J. Mazanec, *Act. Chem. Res., 14 (1981) 266.*
- 10 S. I. Hommeltoft, A. D. Cameron, T. A. Shackleton, M. E. Fraser, S. Fortier and M. C. Baird, Organo*metallics, 5* (1986) 1380.
- 11 T. J. Mazanec, Ph.D. *Dissertution,* The Ohio State University, 1978.